|
Идеи и технологииОпыты математиков превращают мяч в футбольный пончик (31.03.2007), просмотров: 4498Оказывается, обычные мячи, которые появились на соревнованиях за кубок FIFA ещё в 1970 году, можно достаточно долго и увлекательно модифицировать. И дело тут совсем не в улучшении материалов или использовании каких-то современных технологий, а в полёте фантазии. Математической фантазии.
Согласно довольно строгим правилам, покрышка обыкновенного спортивного мяча состоит из 32 кусочков в форме правильных выпуклых фигур – 12 пятиугольников и 20 шестиугольников, расположенных рядом друг с другом так, что они образовывают закрытую пространственную фигуру, которая напоминает сферу. Это, так сказать, спортивное определение футбольного мяча. А теперь выясняется, что в порядок этой строго заданной фигуры можно вносить самые разнообразные изменения. И от кого бы вы думали исходит этот анархистский импульс? Ни за что не поверите – всё от тех же людей, обожающих точные определения – от математиков.
Как утверждает Иварc Петерсон (Ivars Peterson) в своей статье о матэкспериментах с футбольными мячами, модели этих спортивных снарядов вполне могут быть преобразованы в другие мячи сферической и даже тороидальной формы.
Автор, правда, в оригинале говорит о форме пончика, но, думается, что его утверждение и без того звучит несколько шокирующее.
Но тут же он задаётся целым рядом вопросов, о которых нематематик наверняка даже и не задумается: есть ли другой способ расположить кусочки покрышки? Можно ли использовать другие фигуры вместо пяти— и шестиугольников? И вообще, могут ли мячи выглядеть как-то иначе?
Котшик говорит, что футбольный мяч соответствует следующим требованиям, опирающимся на теорию графов:
Если потребовать, чтобы в вершинах соприкасались три фигуры, то получится обычный мяч. Но если это требование изменить, то возможными станут многие другие варианты дизайна.
Сделать это можно с помощью математического аппарата, называемого разветвлённым покрытием (краткую информацию на английском языке о разветвлённом покрытии читайте здесь).
Такое своеобразное развлечение можно назвать научным, ведь футбольный мяч вполне можно назвать математическим объектом. Более того, его модель получила место в классификации геометрических фигур, и называется она "усечённый икосаэдр" (о свойствах этой фигуры можете подробнее почитать тут).
К примеру, Котшик рассказывает, как можно создать "новый" мяч вот так…
Представьте обыкновенный футбольный мяч, собранный из обычных 32 кусочков-граней, наложенных на поверхность Земли так, чтобы одна из вершин находилась на Северном полюсе, другая – на Южном. Прочертите маршрут от полюса до полюса так, чтобы он проходил по сторонам граней. После этого – всего-то! – вытяните получившуюся ломаную линию в прямую – "меридиан", "выпрямляя" стороны граней, образующих линию.
Затем сделайте разрез вдоль одного меридиана и, придерживая полюса на местах, ужимайте поверхность – что может быть проще? – до тех пор, пока она не станет занимать ровно полушарие (западное, например). Затем сделайте копию этой поверхности и покройте ею незакрытую половину сферы (то есть, восточное полушарие).
Дальше ещё проще – сшейте два полушария. Получили новый мячик, у которого пяти— и шестиугольников стало вдвое больше.
"Причина в том, что оба шва от полюса до полюса, как и обе стороны разреза, который мы сделали вначале ещё на обычном мяче, неразличимы, — объясняет Котшик. – Поэтому два получившихся куска подходят друг к другу идеально".
"Свежеиспечённый" мяч на математическом языке и называется разветвлённым покрытием первоначального мяча, а полюса (которые, как вы помните, нужно было держать зафиксированными; вы их крепко держали?) называются точками разветвления.
Обратите внимание, что новый мяч продолжает удовлетворять прежним условиям: он всё так же состоит из пяти— и шестиугольных граней, пятиугольники касаются сторонами только шестиугольников, а стороны шестиугольников примыкают и к тем, и к другим. Поэтапно этот процесс можете изучить на иллюстрации.
Кстати, для этой версии мяча разрезанную поверхность потребуется сжимать не до полусферы а до… Пусть это будет маленьким "заданием на дом".
Существует ещё множество самых разнообразных опытов, в которых происходят такие перемены, которые словами описать труднее.
Например, математик Майкл Тротт (Michael Trott) предложил модификацию, которая называется тройным покрытием сферы Римана, в процессе построения которой из одного мяча формируется новый, имеющий три совпадающие поверхности. То есть, фактически, фигура проходит ряд изменений, которые превращают мяч… сам в себя. В общем, советуем посмотреть ролик (2,68 мегабайта).
А гомотопность — не что иное, как свойство этих фигур непрерывным образом деформироваться друг в друга. После совершения этой процедуры края трубы (бывшие некогда разрезами на сфере) соединяются – получается тор. Этот "трюк" вы также можете увидеть в ролике (файл MOV, 4,91 мегабайта).
Интересно, как математики умело доказывают, что мяч можно получить из самых разнообразных фигур, даже завязанных узлом-трилистником, который, как считается, развязать невозможно.
Другое дело — математика на стыке с футболом – тут разрешено многое. Действительно, на этом ролике (файл MOV; 6,1 мегабайта) видно, что сложную фигуру легко можно превратить в банальный мяч.
Тем не менее, модель самого обычного, родного "круглого" мяча всегда присутствует в изысканиях математиков – либо до, либо после трансформации. И самое главное – ни красная карточка, ни пенальти, ни удаление с поля за это не грозят. Последние новости:
|
|
Реклама на сайте | Контакты | Наши клиенты | сейчас на сайте 221 чел. | ||||
© 2006-2025 ТОО"Электронный город" Дизайн Алексенко А. |
Комментарии:
Нет комментариев. Почему бы Вам не оставить свой?
Для того чтобы оставить комментарий зарегистрируйтесь и войдите на сайт под своим именем.
Если Вы уже регистрировались то просто войдите на сайт под своим именем.